Serve to hold the grain as it is beaten


Posted April 9, 2018 by ricepolisher

The paddy cleaner, rubber roll sheller, compartment separator, rice cleaner, auxiliary sieve shaker and an electric motor without enclosure were found to be the predominant noise sources in the workrooms of the mill.

 
The paddy cleaner, rubber roll sheller, compartment separator, rice cleaner, auxiliary sieve shaker and an electric motor without enclosure were found to be the predominant noise sources in the workrooms of the mill. The causes of high noise in the rice mills may be attributed to the use of a long flat belt drive, crank-and-pitman mechanism, absence of an electric motor enclosure, poor machine maintenance and inadequate acoustic design of the workroom of the rice mill. About 26% of the total labourers were found to be exposed to higher levels of noise than 85 dBA. Subjective response indicated that about 26% of the total labourers felt noise interferes in their work and about 49% labourers were of opinion that noise interferes with their conversation.

The knowledge of engineering properties such as gravimetrical properties (1,000 grain mass, bulk density, true density, and porosity), dimensional properties (length, width, thickness, aspect ratio, surface area, geometric mean diameter, and sphericity), frictional properties (angle of repose and coefficient of friction), and aerodynamic properties (drag coefficient and terminal velocity) are necessary parameters related to machine design for different agricultural process operations such as handling, harvesting, threshing, cleaning, conveying, sorting, drying, processing, and storage. India is a vast country and contributes 20% of the total world's rice production with cultivars ranging from the scented long grain ones to the sticky short grains. The Kashmir valley cultivates mainly short–medium bold varieties as temperate conditions in the valley are not suitable for the cultivation of long grain scented basmati rice. The most steps in cultivation and postharvest processing are manual and the aim of this work is to emphasize which variety sustains the processing steps to produce high yield quality rice for strengthening the economic conditions of the people.

Today, as in the 19th century, the threshing begins with a cylinder and concave. The cylinder has sharp serrated bars, and rotates at high speed (about 500 RPM), so that the bars beat against the grain. The concave is curved to match the curve of the cylinder, and serves to hold the grain as it is beaten. The beating releases the grain from the straw and chaff. Whilst the majority of the grain falls through the concave, the straw is carried by a set of "walkers" to the rear of the machine, allowing any grain and chaff still in the straw to fall below. Below the straw walkers, a fan blows a stream of air across the grain, removing dust and fines and blowing them away. The grain, either coming through the concave or the walkers, meets a set of sieves mounted on an assembly called a shoe, which is shaken mechanically. The top sieve has larger openings, and serves to remove large pieces of chaff from the grain. The lower sieve separates clean grain, which falls through, from incompletely threshed pieces. The incompletely threshed grain is returned to the cylinder by means of a system of conveyors, where the process repeats.

In order to increase the quality of locally produced rice, the artisanal parboiling process in West and Central Africa was reconceptualized. A novel parboiling unit was constructed using stainless steel (Inox 304) and fitted directly on an improved stove made from fired bricks. The heat profile at different locations in the unit, the physicochemical properties, cooking properties of the parboiled rice, and the fuel efficiency of the stove were evaluated and compared with that of the traditional system. The heat flow in the new unit was from the top to the bottom while the reverse occurred in the traditional unit. The percent impurities and heat‐damaged grains, swelling and water uptake ratios, amylose content, stickiness, and cohesiveness were lower for rice produced using the improved technology (IT) compared to the traditional technology (TT). Whole grains (%), lightness (L*), yellowness (b*), cooking time, viscosity were higher for rice produced using the IT compared to the TT. Most of physicochemical and cooking properties of rice produced using the IT were not different from that of premium quality imported rice and this was achieved when steaming time was between 20–25 min. The improved stove recorded a lower time to boil water and specific fuel consumption and a higher burning rate and firepower at the hot‐start high‐power phase compared to the traditional stove. Most end users rated the IT as easy and safe to use compared to the TT. The new technology was code‐named.

rubber roller husker had high husking energy efficiency compared to the impeller husker. Optimal husking ratio in terms of husking energy efficiency was also found to be optimal in terms of system cracked ratio and broken ratio for all tested paddy varieties uring paddy husking by paddy huskers, some compressive stresses are exerted to rice kernels. Rubber roll husker is a common type used for paddy husking in Iran, because of its better husking performance and less broken rice compared to blade-type huskers. In principle, the rubber roll husker consists of two rubber rollers. One has a fixed position, the other is adjustable to obtain the desired clearance between the two rollers.

If you want to know more information, please visit this website: http://www.china-zjlg.com/product/
-- END ---
Share Facebook Twitter
Print Friendly and PDF DisclaimerReport Abuse
Contact Email [email protected]
Issued By ricepolisher
Country China
Categories Agriculture , Industry , Technology
Last Updated April 9, 2018